Scripting
With the Avencast engine you can do many things without having access to the actual source code of the engine: Story-line, quests, AI, special effects, in-game-sequences, etc. Most of this is done by using the special scripting language.

The whole game-story is implemented with scripts, many spells use scripts and of course some creatures, for example the flies, wouldn’t look that great without scripts. Overall it’s not really hard to learn or to do things, but sometimes it’s a little bit tricky, one reason for this is that many scripts can be run in parallel. Scripts are not actually running concurrently, but they con go to suspend mode if they use special functions like “Wait” or others that need interaction with the player like dialogues or item-use affirmations.
Setting up the environment
For this tutorial I prepared a level where you have to add some scripts. For example a sequence at the beginning when you enter the level and a dialogue with a character that tells you a little story and gives you a quest with an item in return for your services. In fact the level already includes a little script to open the doors synchronously, but you will see later.

Copy the files “02.cfg” and “02.vsd” into your “levels\tutorial” directory of the 1st tutorial. Open “cfg\settings.cfg” and modify the line ‘ level="levels\tutorial\01.cfg"‘ to ‘ level="levels\tutorial\02.cfg"‘ (the line you added in the first tutorial). Don’t forget to save!
Launch Avencast to check if the new level is loaded correctly.

What is scripting

Scripting is programming. With scripts you control the game-flow. For example you are able to spawn creatures on specific position, control the camera or show a dialogue window when an event occurs. Such trigger events can be the use of an object, colliding with a wall or simply after a specific duration of time. For this tutorial it is assumed you are familiar with the programming language “C” which is very similar in syntax (actually identical in many aspects). Please see the ‘Avenscript’ reference in the Avencast help file for details about the syntax of the scripting language.
The quest
The prepared level consists of two rooms separated by a door. In the first room is a NPC standing to give you a quest and in the second room are some creatures waiting to be killed. We now want the NPC to tell you a little story and give you the quest to kill all the creatures in the second room and come back to receive a little award. Well, sounds easy … of course, it is.
The dialogue

“Ok, let’s script a little dialogue …” I wish it was so easy… Dialogues are always a bit tricky because there are so many states you have to keep in mind. The best way is to draw a diagram – there you can see quickly if something is missing. But before you can start with that diagram you have to clearly define what the dialogue should do. It could be as follows: At first the player goes to the NPC, interacts with him (presses E), the dialogue starts and he tells him the story and offers a quest. Now you can give the player the option to accept the quest or not.

If he refuses and comes back later the player has the options to hear the story again or to accept the quest directly. Ok let’s create a little diagram:

The legend

Dialogue states:

Dialogue step:

Events:
Before the quest

During the quest

After the quest

As you can see it’s good that we drew a little diagram with all states the dialogue may have. And don’t forget that this is only the meaning of the dialogue: the actual text is completely missing at this point. It is always a good idea to take a temporary text until the final text is available. This makes it possible to test the dialogue by others and helps the text designer to write the dialogue.
The script
So let’s create the script. At first you have to create a script file. Open the “scripts” directory in your explorer and create a new directory called “tutorial02”. Open notepad or the editor you prefer.
At first we have to create an initial script that is executed when the level is loaded for the first time to create a variable that stores the dialogue-state. This can’t be a normal variable because the state would be lost if the script execution finishes, thus you have to create a level variable that only exists in this particular level and survives the lifetime of the script. You can create such a variable with the following code:
NewLevelVariable("dlgHammlet", "int");

dlgHammlet = 0;
This creates a level-variable and initializes it to zero. Now save the file to “scripts\tutorial02\init.c”. Now we have to make sure this script file is executed on level initialization, thus we have to set the file as the initialization file in the level-config file. Open “levels\tutorial\02.cfg” in your editor and add at the end of the file the following line:
OnInit="scripts\tutorial02\init.c"

This leads to executing the script when the level is loaded for the first time.
That was the first part, now we have to create the dialogue script itself. Create a new file in your editor and save it to “scripts\tutorial02\dlgHammlet.c”. The first thing you have to check before you show a dialogue is which state the dialogue has. This is easiest to do with a switch:
switch(dlgHammlet)

{

At this point we are ready to type our first dialogue:
case 0:

DialogNC("Whew ... what a luck to meet you. I supposed to never come out of this hell! I searched for an artifact in this room, but I havn’t found one, but when I want to leave the room there were these creatures... Can you please help? Kill these creatures and you get somthing for me, you won’t do this without an award.","Hm ... sounds dangerous, but I’ll try my best.","Well ... NO!"); return;
This is the dialogue-window itself with all texts. The “return” at this position has a special meaning. It tells the script to will wait until the player selects an answer. Functions that wait for such a response are called “re-enter” functions.

 To identify which answer was given, a value from 1 to n is stored in the variable “dlgAnswer”. “n” indicates the count of possible answers.
switch (dlgAnswer)

{

case 1:

CloseDialog();
dlgHammlet=2;

break;

case 2:

CloseDialog();

dlgHammlet=1;

break;

}

break;

This is, so far, the entire first dialogue-state. You see it’s not very difficult to show a dialogue.
The next state should be clear without any comments, so I just give you the source code:

case 1:

DialogNC("Hello there, are you really to busy to help me? Please, I'm to unskilled for this creatures.", "Okey, I'll help you. I hope these creatures arn't to strong.", "I forgot what you told me to do, but if you tell me once again I'll think about it.", "No sorry, I'm in a hurry!"); return;
switch (dlgAnswer)

{

case 1:

CloseDialog();

dlgHammlet=2;

break;

case 2:

DialogNC("Whew ... what a luck to meet you. I supposed to never come out of this hell! I searched for an artifact in this room, but I havn't found one, but when I want to leave the room there were these creatures... Can you please help? Kill these creatures and you get somthing for me, you won't do this without an award.","Hm ... sounds dangerous, but I'll try my best.","Well ... NO!"); return;

switch (dlgAnswer)

{

case 1:

CloseDialog();

dlgHammlet=2;

break;

case 2:

CloseDialog();

dlgHammlet=1;

break;

}

break;

case 3:

CloseDialog();

break;

}

break;

For your next two dialogue-states you have to think about what’s the easiest way of checking if all creatures are dead. There are two possible solutions: the first is to check every time a creature is killed if it was the last create that was alive and if that’s true set the dialogue state. The other is to check if there is one of the creatures alive when executing the dialogue-script. I chose the second solution for this tutorial because it’s easier to implement in this situation (of course, there a situations where you have to take the first solution, for example when a door should open when the last creature is dead). Okay… let’s do it. But before we can go on with scripting you have to give all these creatures a unique ID (identification string) so that you are able to identify them. Open the level in the VSD-editor, select all the creatures with the right mouse button and holding [Ctrl] down. Press [Space] to edit their attributes. Uncheck “Replace” on the lower right border and overwrite the content of the edit field with:

WorldID="HammletCreature"
Press “OK” and save the level. Now back to your script:

case 2:

int i=GetAllObjectsWithWorldID("HammletCreature");
while (i-->0)

{

if (!IsDead(objList[i])) break;

}

if (i!=-1)

{
That’s it so far, that’s the whole check if any of the creatures is alive, if so, “i” is unequal to -1 (which indicates that the loop wasn’t interrupted by the break). The next part is to add the dialogue:
DialogNC("Hello again, did you kill all the creatures? I hope so.", "I'm so sorry, but I havn't. They looked somewhat weaker than at the first moment"); return;

CloseDialog();
}
Well at this state we don’t really have to do much. The next part:
else

{

DialogNC("Hello again, did you kill all the creatures? I hope so.", "Well... I tried... but ... No joke! I did it!"); return;

AddGold(mc_ID, 10000);

DialogNC("Really? That's unbelievable! I'm so glad. Here is your promised award.", "Oh thank you."); return;

CloseDialog();

dlgHammlet=3;

}

break;

And the last dialogue when the whole quest is over:

case 3:

DialogNC("Hei ho, you are still here? Why don't you leave this small room to find new adventures? Oh... I understand you have to script new before you are able to survive them.", "Holly shit... you arn't a computer?"); return;

CloseDialog();

break;

}
Well done, this is the whole scripting thing for the moment. The only thing we have to do now is to set this script as the “use script” (the scrip that is executed when the player presses <E>) of the NPC „Hammlet“ in the first room. Select the NPC in your editor, press [Space] and add following line at the end of the object properties:
OnUse="scripts\tutorial02\dlgHammlet.c"
Okay, launch the game and see what you did.
The Quest entries

Not bad for your first script, eh? But during the game you normally receive entries in your quest-log for such quests, so let’s add them for our level. Open the file “cfg\stories.cfg” in your editor and the following lines at the beginning:
#

desc="Hammlet: Kill ugly creatures"

value 0 " "

value 1 "kill creatures"

value 2 "talk with Hammlet"

value 3 "finished"

quest 1 "Hammlet's creatures" "Kill the ugly creatures for Hammlet."

quest 2 "Hammlet's creatures" "You killed the ugly creatures, now talk with Hammlet."

questend 3 "Hammlet's creatures" "You killed the ugly creatures for Hammlet and received 10000 gold coins."

So let me explain, the “#” at beginning indicates that a new quest entry will start, you have to add this for each quest you want to create.

The next is ‘desc=”Hammlet: Kill ugly creatures”‘ this is the name of the quest for scripts as it will be used internally. If you want to change the state of the quest you have to know this.

‘desc=…’ will be followed by the possible values. If you set a quest on a value that is not declared here you will get an error. The string at the end of the line is the description of the state to make testing easier, you can see this string when you press [Alt Gr]+[V] during game, to show a list of all quests and global and level variables.

The only missing thing is the description that is displayed in the quest-log-window during the game. This is done with the “quest” keyword followed by the value, the title and the description. There is a special keyword “questend” which declares that this state indicates that the quest is finished. This is needed because sometimes you need more than one quest finish, but it works exactly the same as “quest”.
Now you have to add the script-statements in your script to modify the quest-states. Of course, that’s very easy.
So let’s add the first state. There are 3 lines we have to add this in our dialogue script-file:
SetStory("Hammlet: Kill ugly creatures", 1);

The 3 positions are after each “dlgHammlet=2;” statement.
The next quest state is:

SetStory("Hammlet: Kill ugly creatures", 3);

You have to add this after “dlgHammlet=3;”.

As you can see there is one quest missing. Quest-state 2 is triggered by the all “All creatures killed”-event. You remember? More above I already talked about the issue of choosing the best possible way to handle this event and there I listed 2 possible solutions. Well … at this point we have to change our solution, otherwise we can’t trigger the quest-state change when the last creature is killed. For this purpose you have to create another script file in our “tutorial02” directory with the name “KillCreature.c” and the following content:
if (GetStory("Hammlet: Kill ugly creatures")!=1) return;

int i=GetAllObjectsWithWorldID(GetWorldID(obj[0]));

while (i-->0)

{

if ((objList[i]!=obj[0]) && !IsDead(objList[i])) return;

}

SetStory("Hammlet: Kill ugly creatures", 2);

dlgHammlet=3;

At first you check if the quest is set, to ensure that the quest won’t be set if it hasn’t started yet (because the door isn’t locked at this moment and there is the possibility of “cheat-testing”, this avoids many confusions and is very easy to implement)
The next part is the loop where you check if any creature is alive. You have to exclude the creature that is currently killed (the ID is stored in “obj[0]”) because at the execution time of the script the creature is still alive, so that it is possible to cure it before it dies. This is one of the things a titled with “Scripting is tricky”.
And at the very end when the execution of the script isn’t interrupted by an “return” statement, which indicates that the current creature was the last living one, you have to update your quest-state and dialogue-state.
The next step is to set this script to be executed when any of the creatures is killed. Select all the creatures in your editor, press [Space] and replace the string in the text-field with:
OnKill="scripts\tutorial02\KillCreature.c"

Okay, so far so good, but now your dialogue script doesn’t fit into your new problem solution, thus you have to change the whole “case 2” statement to:
case 2:

DialogNC("Hello again, did you kill all the creatures? I hope so.", "I'm so sorry, but I havn't. They looked somewhat weaker than at the first moment"); return;

CloseDialog();

break;

case 3:

DialogNC("Hello again, did you kill all the creatures? I hope so.", "Well... I tried... but ... No joke! I did it!"); return;

AddGold(mc_ID, 10000);

DialogNC("Really? That's unbelievable! I'm so glad. Here is your promised award.", "Oh thank you."); return;

CloseDialog();

dlgHammlet=4;

SetStory("Hammlet: Kill ugly creatures", 3);

break;

And you have to change the old “case 3” to “case 4”.
Now you are ready for another test session.
Locking the door
Slowly our small level gets more complex, but do you notice that there is a little bug? If you kill the creatures before you accept the quest, you aren’t able to finish the quest because the dialogue doesn’t treat this situation after we changed our concept. There are 3 possible solutions to fix this bug:

1st Check if all creatures are dead, when the player accepts the quest and update the dialogue-state and quest-state to state 3. This is the dirtiest solution, but if all your text are already translated and afterwards you realize this bug, this is maybe the only possible solution.

2nd Lock the door and give a key to the player when he accepts the quest. This is an average solution I think, but often it is dependent on the quest-design to choose this solution.
3rd Enhance the dialogue with this situation handled and its own dialogues like “Can you please help me?”-“Of course, I can, but I did it already…”. This is the nicest solution I would say.

But for tutorial purposes I chose the 2nd solution, so I can show you some more script-examples.

The first thing you have to do is to create a new item. Open “cfg\item_others.cf” and add the following at the beginning:
#

desc="tut_q_key_hammlet_01"

ItemName="Hammlet's key"

Img="graphics\gui_2\items\hm_it_key_quirius_01.png"

QuestItem=1

ObjID="sr_it_key_01"

key=123

You saw “desc” already at the quests and it’s completely the same. “ItemName” is the name displayed in the item info during game. “Img” is the image of the item. “QuestItem=1” indicates that the item cannot be removed from inventory and is located in the quest-item inventory. “ObjID” is a reference to the 3D-object of the file, which is located in “3dobjs.cfg”. “key=123” indicates that this item can unlock objects that require the key “123” to be usable.
Well, your item is done, now let’s lock the door. Press [F6] to enter wall-mode in the editor, select the 2 doors, press [Space] and replace the string in the text-field with:
NeedKey=123

The door is locked. You just have to add the item to the player’s inventory when he accepts the quest. For this purpose add the following line after each ‘SetStory("Hammlet: Kill ugly creatures", 1);’ statement:
AddToInventory(mc_ID, "tut_q_key_hammlet_01");

That’s all. You have scripted a complete little, (hopefully) bug-free quest.
Camera movement/Sequences
All together this is a cute little level, but what I don’t like is that there is no beginning… so let’s add a little sequence at the beginning.

Camera movement itself is not very hard to do, but to move all the characters and play all the effects in an sequence correctly is the real tricky thing. So we just add a little camera movement and play an animation onto the hero. To create a sequence its easiest to create a new file in our “tutorial02” folder called “Seq_01_start.c” with the content:

StartIngameSequence();

SetCamObj(0, "SequenceStart1.1");

SetCamObj(7, "SequenceStart1.2");

FadeOutWorld(0, 4);

Wait(7); return;

EndIngameSequence();

“StartIngameSequence”, “SetCamObj” and “EndIngameSequence” are script defined global functions located in “scripts\functions\sequences.c”.
At the beginning of a sequence you have to enable the in-game-camera movement by calling “SetCameraMode(1)“ this is implied in “StartIngameSequence“ which also sets the black bars on top and bottom, disables the AI calculation and disables players input to be processed. “EndIngameSequence“ reverses these settings. “Wait“ stops script execution for the given amount of time and then continues script execution. But the sequence won’t be played if you don’t call the script at the beginning. To do this you have to add the following at the end of your “init.c“ file:
FadeOutWorld(1, 0);

RequestRunScript("Seq_01_start.c");

All you have to that this will work is to add the objects that contain the camera-settings. Open the level-editor, press [F3], type camera and select the only entry. Now add 2 objects of this type on the same place as the hero-start position, but with the opposite direction. Set the properties of one object to:
WorldID="SequenceStart1.1"

Height=10

ScriptFloat1=100 ;Distance

ScriptFloat2=80 ;Pitch

And the properties of the other one to:
WorldID="SequenceStart1.2"

Height=32

ScriptFloat1=300 ;Distance

ScriptFloat2=35 ;Pitch

The unforeseen end
Okay, I think that’s enough for one tutorial. I hope you had fun with these little scripts ;-)
Greets, Jan Wosnitza

Some hints for faster scripting
If you press [Alt Gr]+[L] you can reload the level set in the “settings.cfg”-file very fast without restarting the game. This works even if you change the level, but doesn’t if you change config-files.

If you press [Shift]+[Alt Gr]+[L] you can reload the current level and you will enter it at your current position.
If you press [^] ([ö] on German keyboards) you can open the console which is interpreted in the same way as script-files, thus you can call any script-command and it’s possible to directly call a script-file by typing only its path into the console. You see you can do nearly everything with the console.
To find the best camera-position for a sequence you can press [J] during game to control the camera freely and press [F9] to view the current camera settings at the end of the debug-window.
Dialogue text from the database:

To use dialogue text within the database write e.g. the following syntax:

DialogNC("DB:hmadept2,3");

This tells the engine to retrieve the text from the database from the Dialogues table, more precisely the third dialogue part of the dialogue with the id hmadept2. Note that a dialogue entry contains all the possible answers as well as the name of the speaker (as to be displayed in the dialogue screen). The voice file name will be generated from the name, number and level column. Please have a look at the database file to see the structure of a dialogue entry.
The database file can be found in the lang\LANG directory, with LANG being the language code (e.g. eng for English). It is a standard SQLite database file and can be viewed and edited with the SQLite browser (free download http://sqlitebrowser.sourceforge.net/)
Player hasn’t talked yet with the NPC

Tell the story and ask to accept the quest

Player talked with the NPC for one or more times

Ask to accept the quest or to tell the story again

Tell the story again and ask to accept the quest

Player has not finished the quest yet

Player has finished the quest

Ask if the quest is finished (only option is “No”)

Ask if the quest is finished (only option is “Yes”)

Player finished the quest and told the NPC already

Talk about god and the rest of the world

Player kills the last enemy

Description

Description

Description

tell story

refuse

accept

refuse

no

o

yes

o

